
collective.solr Documentation
Release 4.0

Plone Foundation

Dec 31, 2021

Contents

1 Introduction 1

2 Current Status 3

3 Contents 5
3.1 Base Information how Solr and the Integration of Solr and Plone work 5

3.1.1 Architecture . 5
3.1.1.1 Dependencies . 5
3.1.1.2 Indexing . 5
3.1.1.3 Searching . 6

3.2 Installation, Setup and Usage of Solr Integration . 7
3.2.1 Installation . 7

3.2.1.1 Installing collective.solr for a Plone buildout / project 7
3.2.2 Setup Solr . 8

3.2.2.1 Solr Schema . 8
3.2.2.2 Solr Base Schema for Plone . 10

3.2.3 Configuring collective.solr . 10
3.2.3.1 Solr-Connection Configuration . 10
3.2.3.2 TTW Configuration of Solr-Settings . 10

3.2.4 Considerations for a production Setup . 10
3.2.4.1 Java Settings . 10
3.2.4.2 Monitoring . 10
3.2.4.3 Replication . 11
3.2.4.4 SolrCloud . 12

3.3 Development . 12
3.3.1 TODOs: . 12
3.3.2 Search widget: . 13

4 Credits 15

5 Contributors 17

6 Indices and tables 19

i

ii

CHAPTER 1

Introduction

collective.solr integrates the Plone CMS with the Solr search engine.

Apache Solr is based on Lucene and is the enterprise open source search engine. It powers the search of sites like
Twitter, the Apple and iTunes Stores, Wikipedia, Netflix and many more.

Solr does not only scale to any level of content, but provides rich search functionality, like faceting, geospatial search,
suggestions, spelling corrections, indexing of binary formats and a whole variety of powerful tools to configure custom
search solutions. It has integrated clustering and load-balancing to provide a high level of robustness.

collective.solr comes with a default configuration and setup of Solr that makes it extremely easy to get started,
yet provides a vastly superior search quality compared to Plone’s integrated text search based on ZCTextIndex.

1

http://www.plone.org/
http://lucene.apache.org/solr/

collective.solr Documentation, Release 4.0

2 Chapter 1. Introduction

CHAPTER 2

Current Status

The code is used in production in many sites and considered stable. This add-on can be installed in a Plone 4.1 (or
later) site to enable indexing operations as well as searching (site and live search) using Solr. Doing so will not only
significantly improve search quality and performance - especially for a large number of indexed objects, but also reduce
the memory footprint of your Plone instance by allowing you to remove the SearchableText, Description and
Title indexes from the catalog. In large sites with 100000 content objects and more, searches using ZCTextIndex
often taken 10 seconds or more and require a good deal of memory from ZODB caches. Solr will typically answer
these requests in 10ms to 50ms at which point network latency and the rendering speed of Plone’s page templates are
a more dominant factor.

3

http://www.plone.org/
http://lucene.apache.org/solr/
http://www.plone.org/

collective.solr Documentation, Release 4.0

4 Chapter 2. Current Status

CHAPTER 3

Contents

This documentation will describe all necessary information to setup and use Solr in combination with Plone.

3.1 Base Information how Solr and the Integration of Solr and Plone
work

3.1.1 Architecture

When working with Solr it’s good to keep some things about it in mind. This information is targeted at developers and
integrators trying to use and extend Solr in their Plone projects.

3.1.1.1 Dependencies

Currently we depend on collective.indexing as a means to hook into the normal catalog machinery of Plone to detect
content changes. c.indexing before version two had some persistent data structures that frequently caused problems
when removing the add-on. These problems have been fixed in version two. Unfortunately c.indexing still has to hook
the catalog machinery in various evil ways, as the machinery lacks the required hooks for its use-case. Going forward
it is expected for c.indexing to be merged into the underlying ZCatalog implementation, at which point collective.solr
can use those hooks directly.

3.1.1.2 Indexing

Solr is not transactional aware and does not support any kind of rollback or undo. We therefor only send data to
Solr at the end of any successful request. This is done via collective.indexing, a transaction manager and an end
request transaction hook. This means you won’t see any changes done to content inside a request when doing Solr
searches later on in the same request. Inside tests you need to either commit real transactions or otherwise flush the
Solr connection. There’s no transaction concept, so one request doing a search might get some results in its beginning,
than a different request might add new information to Solr. If the first request is still running and does the same search
again it might get different results taking the changes from the second request into account.

5

http://lucene.apache.org/solr/
http://www.plone.org/

collective.solr Documentation, Release 4.0

Solr is not a real time search engine. While there’s work under way to make Solr capable of delivering real time results,
there’s currently always a certain delay up to some minutes from the time data is sent to Solr to when it is available in
searches.

Search results are returned in Solr by distinct search threads. These search threads hold a great number of caches
which are crucial for Solr to perform. When index or unindex operations are sent to Solr, it will keep those in memory
until a commit is executed on its own search index. When a commit occurs, all search threads and thus all caches are
thrown away and new threads are created reflecting the data after the commit. While there’s a certain amount of cache
data that is copied to the new search threads, this data has to be validated against the new index which takes some time.
The useColdSearcher and maxWarmingSearchers options of the Solr recipe relate to this aspect. While cache data is
copied over and validated for a new search thread, the searcher is warming up. If the warming up is not yet completed
the searcher is considered to be cold.

In order to get real good performance out of Solr, we need to minimize the number of commits against the Solr index.
We can achieve this by turning off auto-commit and instead use commitWithin. So we don’t sent a commit to Solr at
the end of each index/unindex request on the Plone side. Instead we tell Solr to commit the data to its index at most
after a certain time interval. Values of 15 minutes to 1 minute work well for this interval. The larger you can make
this interval, the better the performance of Solr will be, at the cost of search results lagging behind a bit. In this setup
we also need to configure the autoCommitMaxTime option of the Solr server, as commitWithin only works for index
but not unindex operations. Otherwise a large number of unindex operations without any index operations occurring
could not be reflected in the index for a long time.

As a result of all the above, the Solr index and the Plone site will always have slightly diverging contents. If you use
Solr to do searches you need to be aware of this, as you might get results for objects that no longer exist. So any
brain/getObject call on the Plone side needs to have error handling code around it as the object might not be there
anymore and traversing to it can throw an exception.

When adding new or deleting old content or changing the workflow state of it, you will also not see those actions
reflected in searches right away, but only after a delay of at most the commitWithin interval. After a commitWithin
operation is sent to Solr, any other operations happening during that time window will be executed after the first
interval is over. So with a 15 minute interval, if document A is indexed at 5:15, B at 5:20 and C at 5:35, both A & B
will be committed at 5:30 and C at 5:50.

3.1.1.3 Searching

Information retrieval is a complex science. We try to give a very brief explanation here, refer to the literature and
documentation of Lucene/Solr for much more detailed information.

If you do searches in normal Plone, you have a search term and query the SearchableText index with it. The Search-
ableText is a simple concatenation of all searchable fields, by default title, description and the body text.

The default ZCTextIndex in Plone uses a simplified version of the Okapi BM25 algorithm described in papers in 1998.
It uses two metrics to score documents:

• Term frequency: How often does a search term occur in a document

• Inverse document frequency: The inverse of in how many documents a term occurs. Terms only occurring in a
few documents are scored higher than those occurring in many documents.

It calculates the sum of all scores, for every term common to the query and any document. So for a query with two
terms, a document is likely to score higher if it contains both terms, except if one of them is a very common term and
the other document contains the non-common term more often.

The similarity function used in Solr/Lucene uses a different algorithm, based on a combination of a boolean and
vector space model, but taking the same underlying metrics into account. In addition to the term frequency and inverse
document frequency Solr respects some more metrics:

• length normalization: The number of all terms in a field. Shorter fields contribute higher scores compared to
long fields.

6 Chapter 3. Contents

collective.solr Documentation, Release 4.0

• boost values: There’s a variety of boost values that can be applied, both index-time document boost values as
well as boost values per search field or search term

In its pre 2.0 versions, collective.solr used a naive approach and mirrored the approach taken by ZCTextIndex. So
it sent each search query as one query and matched it against the full SearchableText field inside Solr. By doing
that Solr basically used the same algorithm as ZCTextIndex as it only had one field to match with the entire text in
it. The only difference was the use of the length normalization, so shorter documents ranked higher than those with
longer texts. This actually caused search quality to be worse, as you’d frequently find folders, links or otherwise rather
empty documents. The Okapi BM25 implementation in ZCTextIndex deliberately ignores the document length for
that reason.

In order to get good or better search quality from Solr, we have to query it in a different way. Instead of concatenating
all fields into one big text, we need to preserve the individual fields and use their intrinsic importance. We get the main
benefit be realizing that matches on the title and description are more important than matches on the body text or other
fields in a document. collective.solr 2.0+ does exactly that by introducing a search-pattern to be used for text searches.
In its default form it causes each query to work against the title, description and full searchable text fields and boosts
the title by a high and the description by a medium value. The length normalization already provides an improvement
for these fields, as the title is likely short, the description a bit longer and the full text even longer. By using explicit
boost values the effect gets to be more pronounced.

If you do custom searches or want to include more fields into the full text search you need to keep the above in mind.
Simply setting the searchable attribute on the schema of a field to True will only include it in the big searchable text
stream. If you for example include a field containing tags, the simple tag names will likely ‘drown’ in the full body
text. You might want to instead change the search pattern to include the field and potentially put a boost value on it -
though it will be more important as it’s likely to be extremely short. Similarly extracting the full text of binary files
and simply appending them into the search stream might not be the best approach. You should rather index those in a
separate field and then maybe use a boost value of less than one to make the field less important. Given two documents
with the same content, one as a normal page and one as a binary file, you’ll likely want to find the page first, as it’s
faster to access and read than the file.

There’s a good number of other improvements you can do using query time and index time boost values. To provide
index time boost values, you can provide a skin script called solr_boost_index_values which gets the object to be in-
dexed and the data sent to Solr as arguments and returns a dictionary of field names to boost values for each document.
The safest is to return a boost value for the empty string, which results in a document boost value. Field level boost
values don’t work with all searches, especially wildcard searches as done by most simple web searches. The index
time boost allows you to implement policies like boosting certain content types over others, taking into account ratings
or number of comments as a measure of user feedback or anything else that can be derived from each content item.

3.2 Installation, Setup and Usage of Solr Integration

3.2.1 Installation

3.2.1.1 Installing collective.solr for a Plone buildout / project

The following buildout configuration may be used to get started quickly:

[buildout]
extends =

buildout.cfg
https://raw.githubusercontent.com/collective/collective.solr/master/solr.cfg
https://raw.githubusercontent.com/collective/collective.solr/master/solr-4.10.x.cfg

[instance]
eggs += collective.solr

3.2. Installation, Setup and Usage of Solr Integration 7

collective.solr Documentation, Release 4.0

After saving this to let’s say solr.cfg the buildout can be run and the Solr server and Plone instance started:

$ python bootstrap.py
$ bin/buildout -c solr.cfg
...
$ bin/solr-instance start
$ bin/instance start

Next you should activate the collective.solr (site search) add-on in the add-on control panel of Plone.
After activation you should review the settings in the new Solr Settings control panel. To index all your content
in Solr you can call the provided maintenance view:

http://localhost:8080/plone/@@solr-maintenance/reindex

Creating the initial index can take some considerable time. A typical indexing rate for a Plone site running of a local
disk is 20 index operations per second. While Solr scales to orders of magnitude more than that, the limiting factor is
database access time in Plone.

If you have an existing site with a large volume of content, you can create an initial Solr index on a staging server
or development machine, then rsync it over to the live machine, enable Solr and call @@solr-maintenance/sync. The
sync will usually take just a couple of minutes for catching up with changes in the live database. You can also use this
approach when making changes to the index structure or changing the settings of existing fields.

Note that the example solr.cfg is bound to change. Always copy the file to your local buildout. In general you
should never rely on extending buildout config files from servers that aren’t under your control.

3.2.2 Setup Solr

3.2.2.1 Solr Schema

Solr Field Types

Autocomplete suggestions with Solr

http://wiki.apache.org/solr/Suggester

Simple autocomplete configuration using the “Title” field (buildout.cfg):

additional-solrconfig =
<searchComponent name="suggest" class="solr.SpellCheckComponent">
<lst name="spellchecker">

<str name="name">suggest</str>
<str name="classname">org.apache.solr.spelling.suggest.Suggester</str>
<str name="lookupImpl">org.apache.solr.spelling.suggest.fst.WFSTLookupFactory</

→˓str>
<str name="field">Title</str>
<float name="threshold">0.005</float>
<str name="buildOnCommit">true</str>

</lst>
</searchComponent>

<requestHandler name="/autocomplete" class="org.apache.solr.handler.component.
→˓SearchHandler">

<lst name="defaults">
<str name="spellcheck">true</str>

(continues on next page)

8 Chapter 3. Contents

http://lucene.apache.org/solr/
https://plone.org
http://wiki.apache.org/solr/Suggester

collective.solr Documentation, Release 4.0

(continued from previous page)

<str name="spellcheck.dictionary">suggest</str>
<str name="spellcheck.count">10</str>
<str name="spellcheck.onlyMorePopular">true</str>

</lst>
<arr name="components">
<str>suggest</str>

</arr>
</requestHandler>

More complex example with custom field/filters:

index +=
name:title_autocomplete type:text_auto indexed:true stored:true

additional-solrconfig =
<searchComponent name="suggest" class="solr.SpellCheckComponent">
<lst name="spellchecker">

<str name="name">suggest</str>
<str name="classname">org.apache.solr.spelling.suggest.Suggester</str>
<str name="lookupImpl">org.apache.solr.spelling.suggest.fst.WFSTLookupFactory</

→˓str>
<str name="field">title_autocomplete</str>
<float name="threshold">0.005</float>
<str name="buildOnCommit">true</str>

</lst>
</searchComponent>

<requestHandler name="/autocomplete" class="org.apache.solr.handler.component.
→˓SearchHandler">

<lst name="defaults">
<str name="spellcheck">true</str>
<str name="spellcheck.dictionary">suggest</str>
<str name="spellcheck.count">10</str>
<str name="spellcheck.onlyMorePopular">true</str>

</lst>
<arr name="components">
<str>suggest</str>

</arr>
</requestHandler>

extra-field-types =
<fieldType class="solr.TextField" name="text_auto">
<analyzer>

<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.ShingleFilterFactory" maxShingleSize="4" outputUnigrams=

→˓"true"/>
</analyzer>

</fieldType>

additional-schema-config =
<copyField source="Title" dest="title_autocomplete" />

3.2. Installation, Setup and Usage of Solr Integration 9

collective.solr Documentation, Release 4.0

3.2.2.2 Solr Base Schema for Plone

3.2.3 Configuring collective.solr

3.2.3.1 Solr-Connection Configuration

ZCML Configuration (prefered)

The connections settings for Solr can be configured in ZCML and thus in buildout. This makes it easier when copying
databases between multiple Zope instances with different Solr servers. Example:

zcml-additional =
<configure xmlns:solr="http://namespaces.plone.org/solr">

<solr:connection host="localhost" port="8983" base="/solr/plone"/>
</configure>

TTW Configuration

3.2.3.2 TTW Configuration of Solr-Settings

3.2.4 Considerations for a production Setup

3.2.4.1 Java Settings

Make sure you are using a server version of Java in production. The output of:

$ java -version

should include Java HotSpot(TM) Server VM or Java HotSpot(TM) 64-Bit Server VM. You can force the Java VM
into server mode by calling it with the -server command. Do not try to run Solr with versions of OpenJDK or other
non-official Java versions. They tend to not work well or at all.

Depending on the size of your Solr index, you need to configure the Java VM to have enough memory. Good starting
values are -Xms128M -Xmx256M, as a rule of thumb keep Xmx double the size of Xms.

You can configure these settings via the java_opts value in the collective.recipe.solrinstance recipe section like:

java_opts =
-server
-Xms128M
-Xmx256M

3.2.4.2 Monitoring

Java has a general monitoring framework called JMX. You can use this to get a huge number of details about the Java
process in general and Solr in particular. Some hints are at http://wiki.apache.org/solr/SolrJmx. The default collec-
tive.recipe.solrinstance config uses <jmx />, so we can use command line arguments to configure it. Our example
buildout/solr.cfg includes all the relevant values in its java_opts variable.

To view all the available metrics, start Solr and then the jconsole command included in the Java SDK and connect to
the local process named start.jar. Solr specific information is available from the MBeans tab under the solr section.
For example you’ll find avgTimePerRequest within search/org.apache.solr.handler.component.SearchHandler under
Attributes.

10 Chapter 3. Contents

http://wiki.apache.org/solr/SolrJmx

collective.solr Documentation, Release 4.0

If you want to integrate with munin, you can install the JMX plugin at: http://exchange.munin-monitoring.org/plugins/
jmx/details

Follow its install instructions and tweak the included examples to query the information you want to track. To track
the average time per search request, add a file called solr_avg_query_time.conf into /usr/share/munin/plugins with the
following contents:

graph_title Average Query Time
graph_vlabel ms
graph_category Solr

solr_average_query_time.label time per request
solr_average_query_time.jmxObjectName solr/:type=search,id=org.apache.solr.handler.
→˓component.SearchHandler
solr_average_query_time.jmxAttributeName avgTimePerRequest

Then add a symlink to add the plugin:

$ ln -s /usr/share/munin/plugins/jmx_ /etc/munin/plugins/jmx_solr_avg_query_time

Point the jmx plugin to the Solr process, by opening /etc/munin/plugin-conf.d/munin-node.conf and adding something
like:

[jmx_*]
env.jmxurl service:jmx:rmi:///jndi/rmi://127.0.0.1:8984/jmxrmi

The host and port need to match those passed via java_opts to Solr. To check if the plugins are working do:

$ export jmxurl="service:jmx:rmi:///jndi/rmi://127.0.0.1:8984/jmxrmi"
$ cd /etc/munin/plugins

And call the plugin you configured directly, like for example:

$./solr_avg_query_time
solr_average_query_time.value NaN

We include a number of useful configurations inside the package, in the collective/solr/munin_config directory. You
can copy all of them into the /usr/share/munin/plugins directory and create the symlinks for all of them.

3.2.4.3 Replication

At this point Solr doesn’t yet allow for a full fault tolerance setup. You can read more about the Solr Cloud effort
which aims to provide this.

But we can setup a simple master/slave replication using Solr’s built-in Solr Replication support, which is a first step
in the right direction.

In order to use this, you can setup a Solr master server and give it some extra config:

[solr-instance]
additional-solrconfig =

<requestHandler name="/replication" class="solr.ReplicationHandler" >
<lst name="master">

<str name="replicateAfter">commit</str>
<str name="replicateAfter">startup</str>

(continues on next page)

3.2. Installation, Setup and Usage of Solr Integration 11

http://exchange.munin-monitoring.org/plugins/jmx/details
http://exchange.munin-monitoring.org/plugins/jmx/details
http://wiki.apache.org/solr/SolrCloud
http://wiki.apache.org/solr/SolrReplication

collective.solr Documentation, Release 4.0

(continued from previous page)

<str name="replicateAfter">optimize</str>
</lst>

</requestHandler>

Then you can point one or multiple slave servers to the master. Assuming the master runs on solr-master.domain.com
at port 8983, we could write:

[solr-instance]
additional-solrconfig =

<requestHandler name="/replication" class="solr.ReplicationHandler" >
<lst name="slave">

<str name="masterUrl">http://solr-master.domain.com:8983/solr/replication</str>
<str name="pollInterval">00:00:30</str>

</lst>
</requestHandler>

A poll interval of 30 seconds should be fast enough without creating too much overhead.

At this point collective.solr does not yet have support for connecting to multiple servers and using the slaves as a
fallback for querying. As there’s no master-master setup yet, fault tolerance for index changes cannot be provided.

3.2.4.4 SolrCloud

You can read more about the Solr Cloud effort which aims to provide this.

3.3 Development

Releases can be found on the Python Package Index at http://pypi.python.org/pypi/collective.solr. The code and issue
trackers can be found on GitHub at https://github.com/collective/collective.solr.

For outstanding issues and features remaining to be implemented please see the to-do list included in the package as
well as it’s issue tracker.

3.3.1 TODOs:

• Migrate tests to use plone.app.testing

• Migrate control panel to use plone.autoform and plone.app.registry

• support for date facets

• result iterator (with __len__ on results object)

• support for “navtree” and “level” arguments for path queries

• provide decorator for solr exceptions

• add signal handlers (see store.py)

• add a configurable queue limit for large transactions

• mapping from accessor name to attribute name, i.e. getTitle -> title, preferably via <copyField> tags in the solr
schema

12 Chapter 3. Contents

http://wiki.apache.org/solr/SolrCloud
http://pypi.python.org/pypi/collective.solr
https://github.com/collective/collective.solr
https://github.com/collective/collective.solr/blob/master/docs/TODO.rst
https://github.com/collective/collective.solr/issues

collective.solr Documentation, Release 4.0

• evaluate http://www.gnuenterprise.org/~jcater/solr.py as a replacement (also see http://tinyurl.com/2zcogf)

• evaluate sunburnet as a replacement https://pypi.python.org/pypi/sunburnt

• evaluate mysolr as backend https://pypi.python.org/pypi/mysolr

• implement LocalParams to have a nicer facet view http://wiki.apache.org/solr/SimpleFacetParameters#
Multi-Select_Faceting_and_LocalParams

• Use current search view and get rid of ancient search override

• Implement a push only and read only mode

• Play nice with eea.facetednavigation

3.3.2 Search widget:

The search widget in the @@search view is implemented using React. It provides the default Plone search behavior.
It uses the search REST API provided by the plone.restapi package.

The sources and distribution files can be found in the static directory. The Webpack build files are also provided in
case you need to improve, customize or extend the default features of the widget.

You can setup the widget development environment by:

$ cd src/collective/solr/static/
$ npm install

Then also given a collective.solr development instance running in port 8080 and solr running:

$ npm start

Then you can access to the URL http://localhost:3000

Once you’ve finished developing, you should create a bundle by:

$ npm run build

3.3. Development 13

http://www.gnuenterprise.org/~jcater/solr.py
http://tinyurl.com/2zcogf
https://pypi.python.org/pypi/sunburnt
https://pypi.python.org/pypi/mysolr
http://wiki.apache.org/solr/SimpleFacetParameters#Multi-Select_Faceting_and_LocalParams
http://wiki.apache.org/solr/SimpleFacetParameters#Multi-Select_Faceting_and_LocalParams
http://localhost:3000

collective.solr Documentation, Release 4.0

14 Chapter 3. Contents

CHAPTER 4

Credits

This code was inspired by enfold.solr by Enfold Systems as well as work done at the Snow Sprint 2008. The solr.py
module is based on the original python integration package from Solr itself.

Development was kindly sponsored by Elkjop and the Nordic Council and Nordic Council of Ministers.

15

https://svn.enfoldsystems.com/trac/public/browser/enfold.solr/branches/snowsprint08-buildout/enfold.solr
http://www.enfoldsystems.com/
http://tarekziade.wordpress.com/2008/01/20/snow-sprint-report-1-indexing/
http://lucene.apache.org/solr/
http://www.elkjop.no/
http://www.norden.org/en/

collective.solr Documentation, Release 4.0

16 Chapter 4. Credits

CHAPTER 5

Contributors

• Hanno Schlichting (hannosh)

• Tom Gross (tomgross)

• Timo Stollenwerk (tisto)

• Manuel Reinhardt (reinhardt)

• Patrick Gerken (do3cc)

• Andreas Zeidler (witsch)

• Martijn Pieters (mjpieters)

• Carsten Senger (csenger)

• Andrea Cecchi (cekk)

• Florian Schulze (fschulze)

• Mauro Amico (mamico)

• Giacomo Spettoli (giacomos)

• (jkubaile)

• Luca Fabbri (keul)

• Witek (witekdev)

• Laurence Rowe (lrowe)

• JC Brand (jcbrand)

• Daniel Widerin (saily)

• Wolfgang Thomas (pysailor)

• Philip Bauer (pbauer)

• Cédric Messiant (cedricmessiant)

• Rodrigo (rristow)

17

collective.solr Documentation, Release 4.0

• (tschorr)

• Alexander Pilz (pilz)

• Jean Jordaan (jean)

• Alexander Loechel (loechel)

18 Chapter 5. Contributors

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	Introduction
	Current Status
	Contents
	Base Information how Solr and the Integration of Solr and Plone work
	Architecture
	Dependencies
	Indexing
	Searching

	Installation, Setup and Usage of Solr Integration
	Installation
	Installing collective.solr for a Plone buildout / project

	Setup Solr
	Solr Schema
	Solr Base Schema for Plone

	Configuring collective.solr
	Solr-Connection Configuration
	TTW Configuration of Solr-Settings

	Considerations for a production Setup
	Java Settings
	Monitoring
	Replication
	SolrCloud

	Development
	TODOs:
	Search widget:

	Credits
	Contributors
	Indices and tables

